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Latent rhythm transformation of drum recordings

Redrumming: Replace or layer recorded drums with alternative 
recordings while preserving the original classes and timing of

a target performance.


Motivation: Lightweight redrumming tool for producers to achieve 
rhythmic transformations not feasible through manual separation in 
drum recordings with layered events.   

Jason Hockman1 and  Jake Drysdale 2

Overview

1SODA, Manchester Metropolitan University, Manchester, United Kingdom
2Beatoven.ai, Bengaluru, Karnataka, India

Method

- Output coherently conveys target rhythm, applied as intended to source 
timbres. (Figure 4).


- Where timbre not convincingly achieved in generations, traces of source 
are heard with reduced high-frequency detail.


- Stage 2 utilises only synthetic data; real and synthetic data exist on same 
manifold from VAE training; experiments indicate transform preserves 
timbre mapping fairly well. Further testing with larger ratio of real 
oneshots and additional augmentation (e.g., reverb) may improve 
mapping and afford more informative evaluation.


- Experimentation with loss balancing may yield further improvements.

System Output and Future Work

Figure 1: Model overview.

Figure 2: System modules with Stage 1 
real data + Stage 2 synthetic data flow. 

Figure 4: Examples of rhythm transformation, with source xs, generation xs, 
and target xt waveforms, target conditioning probabilities (ADT), and 
attention head activations.

Transformer Stack:


- Style transfer formulation: Q = conditioning 
and K/V = μ.


- 3-layer stack; 4 heads each.

- Conditional embeddings projected via 4-

layer Conv1D stacks (LeakyReLU; kernel 5 
and 3), merged with learnable gate.


- Relative positional bias and rhythm bias 
from linear projection of ADT probabilities.


- μ updated via linear interpolation at each 
layer with learnable α.


Gated Residual std_head:


- 1x1 conv + GELU for channel mixing at each 
timestep; depthwise conv (kernel=5) for per-
channel temporal context; pointwise conv 
for cross-channel fusing.


- Sigmoid gate mixes residual and update.


Training
Data:


- Stage 1: 10K 3-sec real drum recordings (breakbeats); randomised mute, gain, 
compression, dequantise, pitch-shifting and cropping during training.


- Stage 2: 10K 3-sec synthetic recordings made from 100 kits built from real and 
electronic oneshots and 100 rhythms; ADT probs, event timing and kits stored. 

- Data creation augmentation: Oneshot pitch and gain; tempo-scaling, swing, 

microtiming, and event-timing dropouts. 

- Training augmentation: Same as Stage 1 without cropping. 

- Transform pairing: Randomised and reseeded per epoch. 


Losses:


- Stage 1: Rep Learning: 1M / Adv Training: 2M steps. KL + Recon (RAVE procedure).


- Stage 2: Rep+Transform Learning: 200K / Adv Training: 160K steps. 

- z re-regulated with KL to Stage 1 βmax=0.05 (6000 steps).

- source_rmx: Standard recon unsuitable; pseudo-targets xs←t built from 

augmented oneshots from xs aligned to rhythm of xt with timing params (swing, 
microtiming, event dropouts); Recon (wᵣ=0.1) computed against xs←t.


- Cycle consistency (w꜀=0.3) promotes invertibility.

- Attention entropy (wₑ=0.1) encourages head diversity. Audio examples: https://jhockman.github.io/

- Stage 2 leverages frozen VAE from Stage 1 (w/o σ) to produce μ and σ 
in similar latent representational space with similar KL values (Figure 3).


- Stage 2 adversarial stage adapts Decoder to new parameters.

- After training, transform performed on real drums with ADT probs. 

Extend     RAVE to transform rhythmic characteristics (i.e., drum 
classes and timing) of source recording xs to match those of a target 
recording xt  (Figures 1 and 2).


2-Stage Process:


- Stage 1 [VAE]: RAVE training procedure with V2 Encoder (E) /
Decoder (D) and continuous latent z parameterised by mean μ and 
std σ.


- Stage 2 [TRANSFORMER]: Discard σ from E; learn rhythm-attended 
μ from μ via lightweight transformer stack with conditioning ct from 
target ADT probabilities and E timbre embedding; σ learned from μ 
with gated residual std_head; μ and σ used to create z input to D.
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Figure 3: Mean KL per latent between posterior distribution 
estimated over Stage 1 (left) and Stage 2 (right) datasets and prior.
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