

Latent rhythm transformation of drum recordings

Jason Hockman¹ and Jake Drysdale²

Correspondence Address: j.hockman@mmu.ac.uk

Overview

Redrumming: Replace or layer recorded drums with alternative recordings while preserving the original classes and timing of a target performance.

Motivation: Lightweight redrumming tool for producers to achieve rhythmic transformations not feasible through manual separation in drum recordings with layered events.

Method

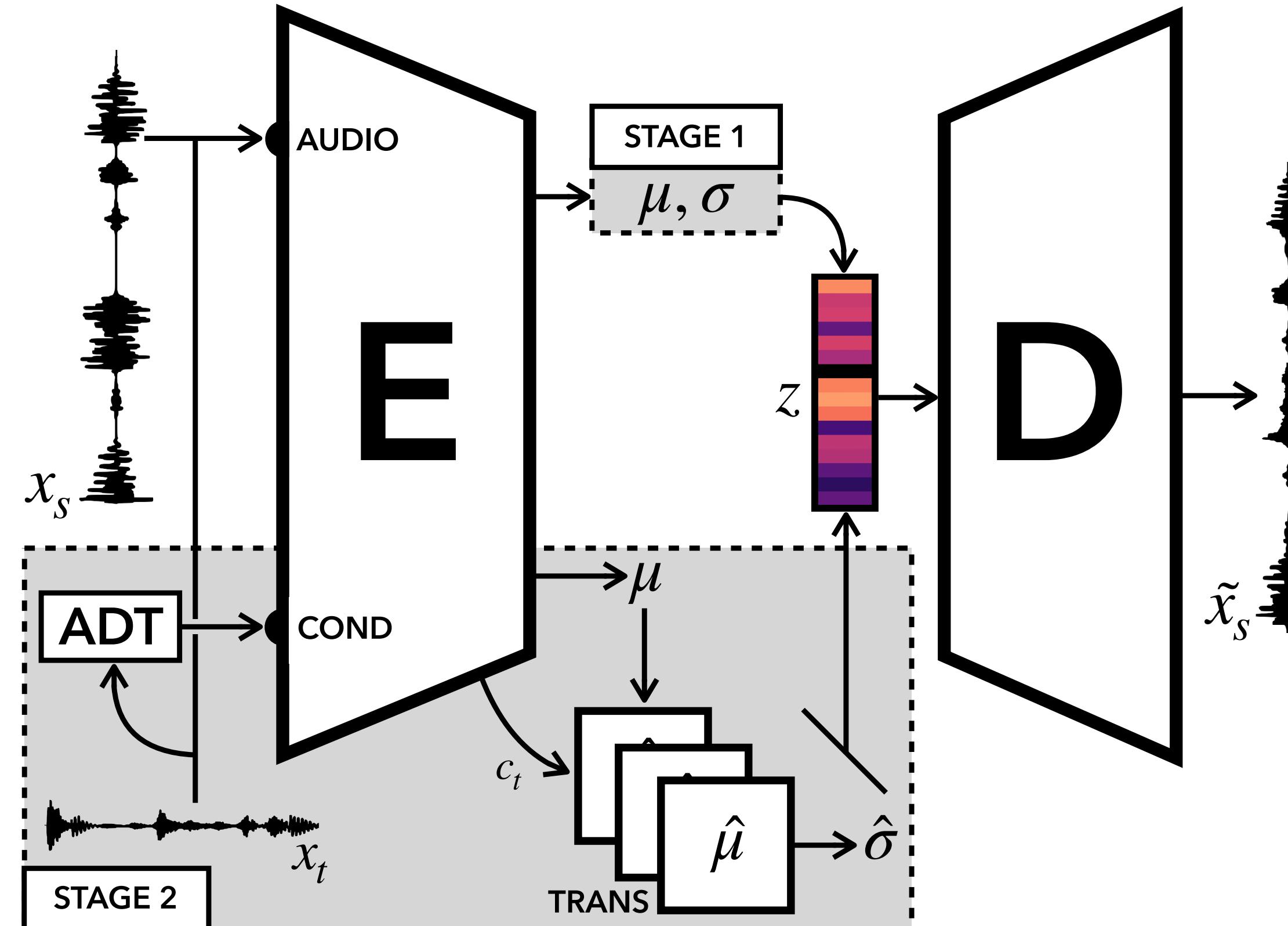


Figure 1: Model overview.

Extend **RAVE** to transform rhythmic characteristics (i.e., drum classes and timing) of source recording x_s to match those of a target recording x_t (Figures 1 and 2).

2-Stage Process:

- Stage 1 [VAE]:** RAVE training procedure with V2 Encoder (E) / Decoder (D) and continuous latent z parameterised by mean μ and std σ .
- Stage 2 [TRANSFORMER]:** Discard σ from E ; learn rhythm-attended $\hat{\mu}$ from μ via lightweight transformer stack with conditioning c_t from target ADT probabilities and E timbre embedding; $\hat{\sigma}$ learned from $\hat{\mu}$ with gated residual std_head; $\hat{\mu}$ and $\hat{\sigma}$ used to create z input to D .

¹SODA, Manchester Metropolitan University, Manchester, United Kingdom

²Beatoven.ai, Bengaluru, Karnataka, India

Transformer Stack:

- Style transfer formulation: $Q = \text{conditioning}$ and $K/V = \mu$.
- 3-layer stack; 4 heads each.
- Conditional embeddings projected via 4-layer Conv1D stacks (LeakyReLU; kernel 5 and 3), merged with learnable gate.
- Relative positional bias and rhythm bias from linear projection of ADT probabilities.
- μ updated via linear interpolation at each layer with learnable α .

Gated Residual std_head:

- 1x1 conv + GELU for channel mixing at each timestep; depthwise conv (kernel=5) for per-channel temporal context; pointwise conv for cross-channel fusing.
- Sigmoid gate mixes residual and update.

Training

Data:

- Stage 1:** 10K 3-sec real drum recordings (breakbeats); randomised mute, gain, compression, dequantise, pitch-shifting and cropping during training.
- Stage 2:** 10K 3-sec synthetic recordings made from 100 kits built from real and electronic oneshots and 100 rhythms; ADT probs, event timing and kits stored.
 - Data creation augmentation:** Oneshot pitch and gain; tempo-scaling, swing, microtiming, and event-timing dropouts.
 - Training augmentation:** Same as Stage 1 without cropping.
 - Transform pairing:** Randomised and reseeded per epoch.

Losses:

- Stage 1:** Rep Learning: 1M / Adv Training: 2M steps. KL + Recon (RAVE procedure).
- Stage 2:** Rep+Transform Learning: 200K / Adv Training: 160K steps.
 - z re-regulated with KL to Stage 1 $\beta_{max}=0.05$ (6000 steps).
 - source_rmx:** Standard recon unsuitable; pseudo-targets x_{s-t} built from augmented oneshots from x_s aligned to rhythm of x_t with timing params (swing, microtiming, event dropouts); Recon ($w_r=0.1$) computed against x_{s-t} .
 - Cycle consistency** ($w_c=0.3$) promotes invertibility.
 - Attention entropy** ($w_e=0.1$) encourages head diversity.

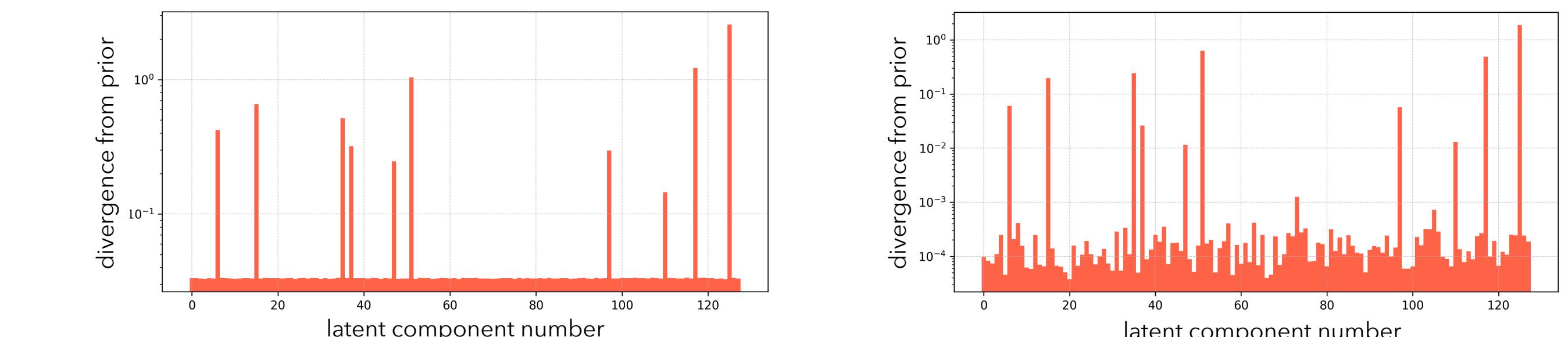


Figure 3: Mean KL per latent between posterior distribution estimated over Stage 1 (left) and Stage 2 (right) datasets and prior.

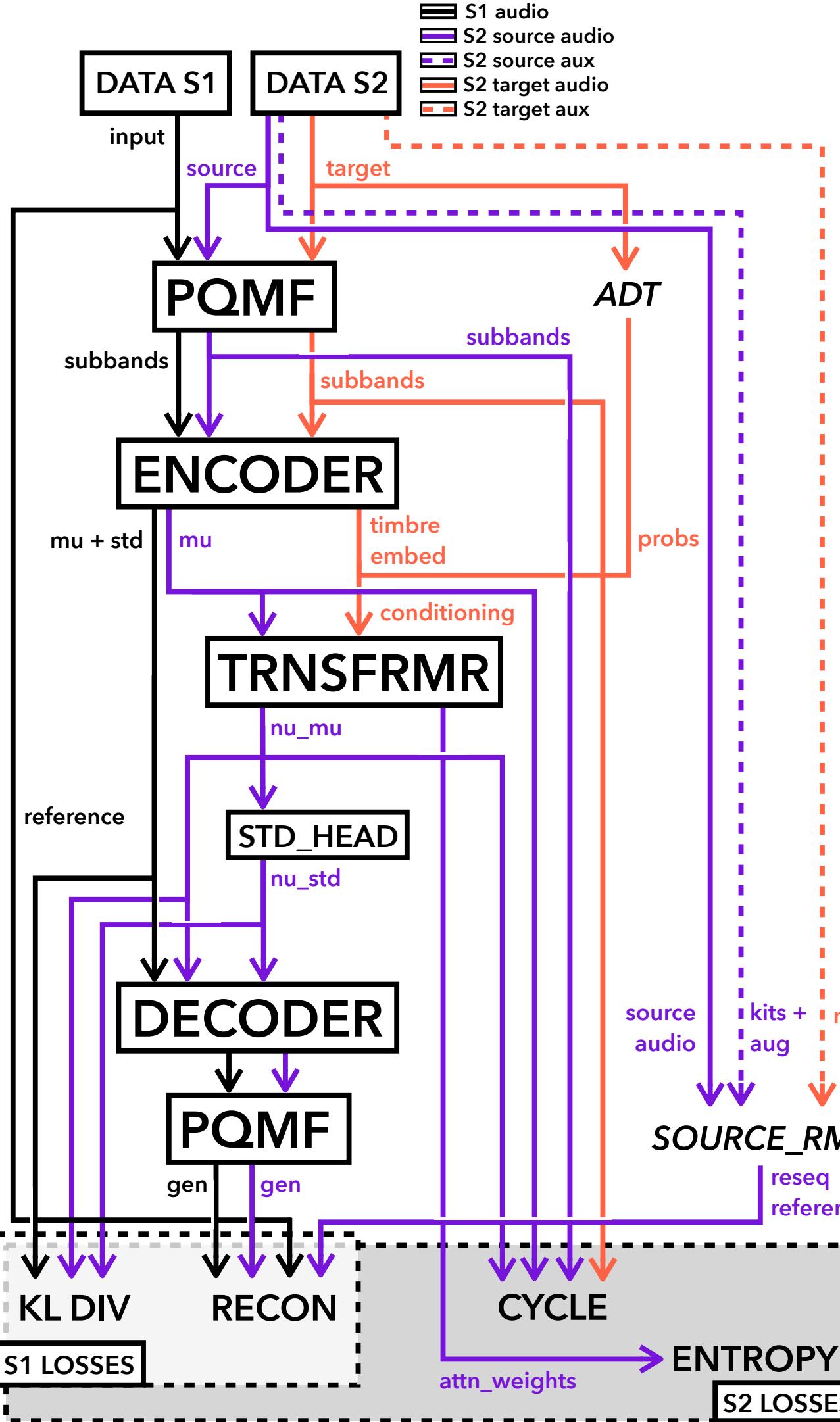


Figure 2: System modules with Stage 1 real data + Stage 2 synthetic data flow.

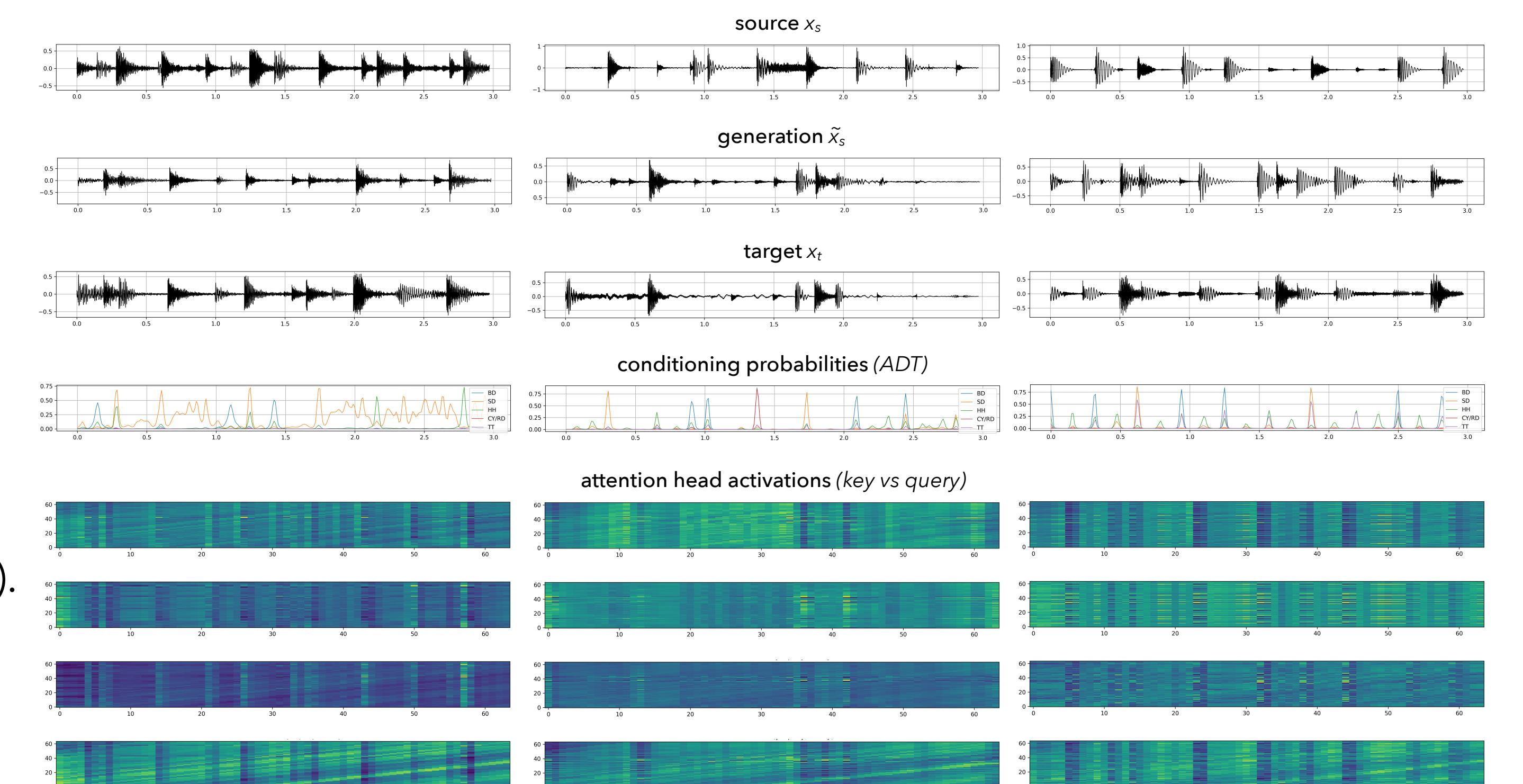


Figure 4: Examples of rhythm transformation, with source x_s , generation \tilde{x}_s , and target x_t waveforms, target conditioning probabilities (ADT), and attention head activations.