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ABSTRACT

A method is proposed for rhythm style transfer of multitimbral drum recordings via conditioning a VAE on
rhythm and timbral features. Modulation and estimation of latent parameters and a novel resequencing process for
reconstruction loss result in an end-to-end transformation circumventing manual segmentation and alignment.

1 Introduction

Drums play a crucial role in shaping the rhythmic and
timbral identity of many forms of music. In multitim-
bral drum recordings, overlapping events, expressive
timing, and timbral subtlety make rhythmic structure
difficult to isolate and manipulate. Many professional
studio workflows rely on redrumming, a technique
that replaces or layers recorded drums with alterna-
tive recordings while preserving the original timing of
a target performance [1]. Dedicated programs such as
Recycle and modern DAWs (Logic, Ableton) provide
manual or semi-automated workflows for time-based
slicing and manipulation of waveforms; however, suc-
cess of such processes is limited by spectral overlap of
drums, requiring time-consuming manual intervention.
In this paper, we extend the well-known RAVE method
[2] to transformation of the rhythmic characteristics of
a source drum recording to match the timing and drum
classes present in a target recording.

2 Method

An overview of the proposed system is presented in Fig-
ure 1. The system operates in two stages: (1) VAE train-
ing and (2) transformer rhythm resequencing. For Stage
1, we adopt the RAVE [2] encoder E and generator G,
training them on 3-sec drum recordings xs to produce a
latent representation z from the encoder outputs—mean
µ and standard deviation σ . Stage 2 discards σ and in-
troduces a lightweight transformer stack that performs
style transfer on µ , yielding µ̂ and a subsequent estima-
tion of σ̂ . Attention key k and value v are learned pro-
jections of µ , and query q is derived from conditional
features ct obtained from 5-class drum transcription
(ADT) probabilities [3], r ∈ RB×5×T , and intermedi-
ate encoder activations a ∈ RB×C×T from target drum
recordings xt . These are projected into embeddings
re and ae via Conv1D sub-networks with LeakyReLU
activations, to provide non-prescriptive attention guid-
ance. Both re and ae use four-layer Conv1D stacks
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Fig. 1: Proposed model for rhythm transformation.

with LeakyReLU, with re kernel size 5, ae size 3, each
mapped to 2D channels (D = 128). Outputs are merged
via gated fusion and projected to form q:

λ = φ(Wg[re;ae]), q = λ re +(1−λ )ae. (1)

[·; ·] denotes channel-wise concatenation, Wg is a learn-
able linear layer, and φ is the sigmoid function. The
resulting query q is passed to a stack of L=3 trans-
former blocks with H = 4 attention heads each. Layer-
wise cross-attention is applied using projections of the
current µ(l) in k and v:

Attn(q,k,v) = softmax
(

qk>√
d
+ γBrel +δBrhythm

)
v,

(2)
where γ,δ ∈ RH are learned per-head scaling factors,
Brel ∈ RB×H×T×T is a learned relative positional bias,
Brhythm ∈ RB×H×T×T is a rhythm bias derived from a
linear projection of ADT probabilities and d is per-head
dimensionality (d = D

H ). µ̂ is updated at each layer l via
linear interpolation using a learned scalar coefficient
α(l) ∈ [0,1]. After the final layer, σ̂ is estimated from
µ̂ via convolutional projection fσ :

σ̂ = softplus
(

fσ ∗ µ̂
(L)

)
+ ε, (3)

where ∗ is 1D convolution and fσ consists of two 1×1
Conv1D layers with LeakyReLU activation. The result-
ing µ̂ and σ̂ parameterise a Gaussian posterior from
which z is sampled and passed to G yielding x̃s.

3 Training

Stage 1 follows the representation learning and adver-
sarial training procedure in [2] with 20,000 3-sec seg-
ments of real and synthesized drum recordings. Stage

2 guides rhythm transform learning while concurrently
re-regulating the latent space over 6000 steps. The
model is trained using Adam (LR = 2e−4) with batch
size 8; fuser networks are trained with a reduced rate
of 1e−4 to mitigate timbre leakage. As the transform
modifies source rhythmic–timbral layout, standard re-
construction loss (i.e., comparing x̃s to xs) is unsuitable.
To produce pseudo-targets for training reconstruction
losses, Stage 2 employs a 10,000-segment synthetic
dataset created from 100 kits constructed from real
and electronic oneshots with pitch and gain augmenta-
tion and 100 rhythms across various styles. Temporal
expressivity is added via tempo scaling, swing, mi-
crotiming, and event-timing dropouts. Kits are stored
per-segment with pitch and gain settings, enabling re-
sequenced reconstruction loss pseudo-targets by ap-
plying augmented oneshots used in assembling xs to
drum class events and timing determined by xt . Cycle
consistency and attention entropy losses respectively
promote invertibility and head diversity during train-
ing. Following Stage 2, the trained system performs
transformations directly on real drum recordings.

4 Examples and Summary

Examples of the transformation are presented on the
supporting website.1 System output sounds coherent,
with the rhythm of the target applied as intended to
the source timbres. In cases where the timbre is not
convincingly achieved in the generations, traces of the
source are heard with reduced high frequency detail;
however, improved fidelity is expected through further
experimentation with loss balancing. Future work will
explore an interactive sequencing interface to allow
direct control over target rhythm events within xs.
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